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Robert Conte1, A Michel Grundland2,3 and Micheline Musette4

1 Service de physique de l’état condensé (CNRS URA 2464), CEA-Saclay,
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Abstract
Among the reductions of the resonant three-wave interaction system to six-
dimensional differential systems, one of them has been specifically mentioned
as being linked to the generic sixth Painlevé equation P6. We derive this
link explicitly, and we establish the connection to a three-degree-of-freedom
Hamiltonian previously considered for P6.

PACS numbers: 02.30.Hq, 02.30.Ik

1. Introduction

The three-wave resonant interaction system (3WRI) in 1 + 1 dimensions, i.e. whose
impulsions kj and pulsations ωj have a zero sum, k1 + k2 + k3 = 0, ω1 + ω2 + ω3 = 0, can
be mathematically described by six coupled first-order partial differential equations (PDEs)
in six dependent complex variables uj , ūj (the amplitudes) and two independent variables
x, t [21], {

uj,t + cjuj,x − iūkūl = 0,

ūj,t + cj ūj,x + iukul = 0, i2 = −1,
(1)

in which (j, k, l) denotes any permutation of (1, 2, 3) and cj are the constant values of the
group velocities, with (c2 − c3)(c3 − c1)(c1 − c2) �= 0.

This system admits a third-order Lax pair [21]. In the traceless zero-curvature
representation, this is given by [1]
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ρ = −c3 − c1

c2 − c3
, σ = c1 − c2

c3 − c1
, (2)

L = iλ

c1 − c2


−1 + 2ρ 0 0

0 2 − ρ 0
0 0 −1 − ρ


 +

i

c1 − c2


 0 −σρu3 σρū2

σ ū3 0 −σu1

−u2 −ū1 0


 , (3)

M = iλ

c1 − c2


c1 − 2c2ρ 0 0

0 −2c1 + c2ρ 0
0 0 c1 + c2ρ




+
i

c1 − c2


 0 c3σρu3 −c2σρū2

−c3σ ū3 0 c1σu1

c2u2 c1ū1 0


 , (4)

[∂x − L, ∂t − M] = 0, (5)

in which λ, the spectral parameter, is an arbitrary complex constant.
The purpose of this paper is to show the existence of at least one noncharacteristic one-

dimensional reduction to a system of ordinary differential equations (ODEs) integrable with
the generic sixth Painlevé function and to integrate it explicitly. Indeed, at the present time,
various reductions of this system have been integrated with most of the six Painlevé functions
[9, 15, 17], but no explicit link with the generic sixth Painlevé equation has been found
up to now.

Since a noncharacteristic reduction preserves the order, it is necessary, in order to integrate
with P6 which depends on four parameters α, β, γ, δ, that the reduced system of ODEs depends
on two arbitrary parameters. The determination of all subgroups of the invariance group of the
3WRI system, which allows one to generate all the classical reductions, has been performed
in [17].

The paper is organized as follows. After recalling in section 2 the singularity structure of
the system, we define the reduction in section 3, and then generate its first integrals from the
Lax pair in section 4. The explicit integration with the generic P6 equation is performed in
sections 5 and 6. In section 7, we discuss the link with two previous works on the same kind
of third-order matrix Lax pair and the possible implications on a second-order matrix Lax pair
for P6.

2. Local singularity analysis

The singularity structure analysis of the 3WRI system (1) has been performed in the more
general setting of three space variables [11]. The result is a unique family of movable
singularities, in which the six components uj , ūj all behave like a simple pole

uj ∼ ajX
−1, ūj ∼ bjX

−1, (6)

in the neighbourhood of a singular manifold [20],

ϕ(x, t) − ϕ0 = 0, (7)

in which ϕ is an arbitrary function of the independent variables, ϕ0 is an arbitrary movable
constant and the expansion variable X(x, t) [6] vanishes along with ϕ − ϕ0 and satisfies

Xx = 1 + O(X), Xt = −C + O(X), C = − ϕt

ϕx

. (8)

The linearized system of (1) in the neighbourhood of the expansion (6) is of Fuchsian type
near the singular manifold, and its six Fuchs indices r are r = −1, 0, 0, 2, 2, 3.
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The existence of the isospectral Lax pair (5) implies that no movable logarithms can enter
the expansion (6), which is indeed the case [11].

For any noncharacteristic reduction, the resulting system of ODEs also admits the
above family of movable simple poles, and the first integrals can only have the singularity
degrees 2, 2, 3.

3. A noncharacteristic reduction and its Lax pair

The problem of finding a noncharacteristic reduction of the 3WRI system and its Lax pair has
been tackled by several authors using different theoretical frameworks. Among them, Kitaev
[15] gave the one-dimensional reduction (already given in [9] in the restricted case βj = 0)


ζ = x

t
, β1 + β2 + β3 = 0,

uj (x, t) = (t (cj − ζ ))−1+iβj ψj ,

ūj (x, t) = (t (cj − ζ ))−1−iβj ψ̄j ,

(9)

in which βj are constants, to the six first-order ODEs


d

dζ
ψj = i(cj − ζ )−iβj (ck − ζ )−1−iβk (cl − ζ )−1−iβl ψ̄kψ̄ l,

d

dζ
ψ̄j = −i(cj − ζ )iβj (ck − ζ )−1+iβk (cl − ζ )−1+iβl ψkψl,

(10)

in which (j, k, l) denotes any permutation of (1, 2, 3). However, he performed the integration
only in a particular case.

As noted by Kitaev, ζ, c1, c2, c3 only contribute by their cross-ratio, so this system depends
only on two parameters βj . It is nevertheless advisable to keep cj s to display the ternary
symmetry.

To compute the reduced Lax pair, let us represent the PDE Lax pair as the 1-form

ω = Lϕ dx + Mϕ dt, (11)

in which (L,M) depends on (x, t, λ). One wants to find two operators L,M and one scalar
variable µ, so as to represent the reduced Lax pair as


 = L� dζ + M� dµ, (12)

in which (L,M) depends on (ζ, µ).
One first eliminates uj , ūj , x, dx from the reduction (9) to obtain

ω = L1(ζ, λ, t)ϕ dζ + M1(ζ, λ, t)ϕ dt, (13)

then one applies a change of basis

ϕ = P�, (14)

in which the transition matrix P is chosen to depend only on t, so as to gather the dependence
on (t, λ) into a single variable µ. This matrix takes the form

P = diag(t i(β3−β2)/3, t i(β1−β3)/3, t i(β2−β1)/3), (15)


 = P −1ω − P −1(dP)P −1ϕ, (16)

and the result is (12), with µ = λt .
The reduced traceless Lax pair (L,M) in zero-curvature representation

[∂ζ − L, ∂µ − M] = 0 (17)
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depends on the constant spectral parameter µ,

L = i

c1 − c2
µ


−1 + 2ρ 0 0

0 2 − ρ 0
0 0 −1 − ρ




+
i

c1 − c2


 0 −σρψ3(c3 − ζ )−1+β3i σρψ̄2(c2 − ζ )−1−β2i

σψ̄3(c3 − ζ )−1−β3i 0 −σψ1(c1 − ζ )−1+β1i

−ψ2(c2 − ζ )−1+β2i −ψ̄1(c1 − ζ )−1−β1i 0


 , (18)

M = i

c1 − c2


c1 − ζ − 2ρ(c2 − ζ ) 0 0

0 −2(c1 − ζ ) + ρ(c2 − ζ ) 0
0 0 c1 − ζ + ρ(c2 − ζ )




+
i

3
µ−1


β2 − β3 0 0

0 β3 − β1 0
0 0 β1 − β2




− i

c1 − c2
µ−1


 0 −σρψ3(c3 − ζ )β3i σρψ̄2(c2 − ζ )−β2i

σψ̄3(c3 − ζ )−β3i 0 −σψ1(c1 − ζ )β1i

−ψ2(c2 − ζ )β2i −ψ̄1(c1 − ζ )−β1i 0


 . (19)

The singularities of the matrixM in the complex spectral parameter are µ = 0 (of the Fuchsian
type) and µ = ∞ (of the non-Fuchsian type).

4. The two first integrals and the reduced fourth-order system

The presence of one Fuchsian singularity in the monodromy matrix M allows one to generate
easily the first integrals. Indeed, denoting by M−1 the residue of the matrix M at the Fuchsian
singularity µ = 0,

M = M−1µ
−1 + M0, (20)

the invariants of the residue M−1 are constants of the motion. These are generated by the
characteristic polynomial

det(M−1 − z) = −z3 −
(
K1 +

β2
1 + β2

2 + β2
3

6

)
z + 2i

(
K2 − (β2 − β3)(β3 − β1)(β1 − β2)

54

)
,

(21)

in which K1,K2 denote the only two first integrals

K1 = [(c2 − c3)ψ1ψ̄1 + (c3 − c1)ψ2ψ̄2 + (c1 − c2)ψ3ψ̄3]((c2 − c3)(c3 − c1)(c1 − c2))
−1,

(22)

K2 = [
1
2ψ1ψ2ψ3(c1 − ζ )β1i(c2 − ζ )β2i(c3 − ζ )β3i

+ 1
2 ψ̄1ψ̄2ψ̄3(c1 − ζ )−β1i(c2 − ζ )−β2i(c3 − ζ )−β3i + 1

6 ((β2 − β3)(c2 − c3)ψ1ψ̄1

+ (β3 − β1)(c3 − c1)ψ2ψ̄2 + (β1 − β2)(c1 − c2)ψ3ψ̄3)
]

× ((c2 − c3)(c3 − c1)(c1 − c2))
−1. (23)

These two first integrals have the singularity degrees 2 and 3, in agreement with the results
of section 2. The two first integrals allow us to reduce the order from 6 to 4. Introducing the
six variables ρj , ϕj ,

ψj = ρj eiϕj , ψ̄j = ρj e−iϕj , (24)
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the two invariants only depend on the four variables ρj , χ ,

K1 = [
(c2 − c3)ρ

2
1 + (c3 − c1)ρ

2
2 + (c1 − c2)ρ

2
3

]
((c1 − c2)(c2 − c3)(c3 − c1))

−1, (25)

K2 =

ρ1ρ2ρ3 cos χ +

1

6

∑
j

(βk − βl)(ck − cl)ρ
2
j


 ((c1 − c2)(c2 − c3)(c3 − c1))

−1, (26)

χ =
∑

j

(ϕj + βj log(cj − ζ )). (27)

Therefore, the differential system for ρj , χ is closed. This allows one to discard the three
variables ϕj , remembering only their first derivatives

ϕ′
j = ρkρl

(ck − ζ )(cl − ζ )ρj

cos χ, (28)

and to focus on the closed fourth-order system

ρ ′
j = ρkρl

(ck − ζ )(cl − ζ )
sin χ, (29)

χ ′ =
∑

j

(
ρkρl

(ck − ζ )(cl − ζ )ρj

cos χ − βj

cj − ζ

)
, (30)

which admits the two first integrals (25) and (26).
In order to integrate the system (29)–(30), it is advisable to lower the order from 4 to 2, for

instance by building a single second-order ODE depending on the four parameters K1,K2, βj .

5. Link to a classified second-order, second-degree ODE

Following the procedure of [17], we derive the change of variables which allows the fourth-
order system (29)–(30) to be explicitly integrated in terms of the generic P6 equation.

Given any two components ρ2
j , they admit a unique (up to a multiplicative factor) linear

combination Y whose first derivative has no contribution from sin χ , e.g. [17, equation (5.41)],


Y = c3 − ζ

c2 − ζ
ρ2

2 − ρ2
3 ,

Y ′ = − c2 − c3

(c2 − ζ )2
ρ2

2 ,

Y ′′ = −2
c2 − c3

(c2 − ζ )3

[
ρ2

2 +
c2 − ζ

(c1 − ζ )(c3 − ζ )
ρ1ρ2ρ3 sin χ

]
.

(31)

By eliminating ρj and χ between Y, Y ′, Y ′′ and the two invariants, one builds an ODE for Y
[17, equation (5.42)], which has second order, second degree and the binomial type

Y ′′2 = F(Y ′, Y, ζ ). (32)

This binomial type has been ‘classified’ [8], i.e. all such ODEs with the Painlevé property
have been enumerated and integrated. Therefore, if the present ODE for Y (x) has the Painlevé
property, there should exist a homographic transformation mapping it to one such classified
ODE. This is indeed the case, and there exists an affine transformation

Y = c2 − c3

c2 − ζ
[λ(ζ )y(x) + µ(ζ )], x = X(ζ), (33)
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which maps the ODE for Y (ζ ) to the canonical ODE SD.I.a for y(x) [8, equation (5.4)],

−x2(x − 1)2y ′′2 − 4y ′(xy ′ − y)2 + 4y ′2(xy ′ − y)

+ A0y
′2 + A2(xy ′ − y) +

(
A3 +

A2
0

4

)
y ′ + A4 = 0. (34)

Among the equations determining the three functions λ(ζ ), µ(ζ ),X(ζ ), the leading ones are


λ′′ = 0, µ′′ = 0, (λ2X′)′ = 0,

X′

X(X − 1)
− λ

(c1 − ζ )(c2 − ζ )(c3 − ζ )
= 0,

(35)

and this results in six possible values for the three functions λ(ζ ), µ(ζ ),X(ζ ),

λ = (cj − ck)(cl − ζ ), x = − (cj − cl)(ck − ζ )

(ck − cj )(cl − ζ )
, (36)

in which (j, k, l) is any permutation of (1, 2, 3). Let us choose for instance the value

λ = −(c3 − c1)(c2 − ζ ), (37)

x = − (c1 − c2)(c3 − ζ )

(c3 − c1)(c2 − ζ )
, (38)

µ = −K1

2
(c3 − c1)(c2 − ζ ) +

β2

4
[β1(c3 − c1)(c2 − ζ ) − β2(c1 − c2)(c3 − ζ )]. (39)

The three variables ρ2
j are then linear in y ′ and y,

ρ2
j = (c1 − c2)(c2 − c3)(cj − ζ )

c2 − ζ
y ′ − (c3 − c1)(cj − c2)y

− (cj − ck)(cj − cl)(1 − δj,2)
K1

2
+ (cj − ck)(cj − cl)

β2β4−j

4
, (40)

in which (j, k, l) is any permutation of (1, 2, 3), and the link with the four constants in SD.I.a
is


A0 = −2K1 − 1

2

(
β2

1 + β2
2 + β2

3

)
,

A2 = β2

[
β3 − β1

3
K1 + 4K2 +

1

4
β2

2 (β3 − β1)

]
,

A3 = β3

[
β1 − β2

3
K1 + 4K2 +

1

4
β2

3 (β1 − β2)

]
,

A4 = −4K2
2 − 5β2

2 + 2β2β3 + 2β2
3

18
K2

1 − 2(β3 − β1)

3
K1K2

− β2
2

5β2
2 + 8β2β3 + 8β2

3

24
K1 − β2

2 (β3 − β1)K2 − β4
2
β2

2 + 3β2β3 + 3β2
3

16
.

(41)

In order to display the permutation symmetry, it is convenient to introduce the additional
constant

A1 = β1

[
β2 − β3

3
K1 + 4K2 +

1

4
β2

1 (β2 − β3)

]
. (42)

Equation SD.I.a, first derived by Chazy [5, equation B-V, p 340] up to some homographic
transformation, has been integrated by Bureau et al [4], and its general solution is an algebraic
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transform of the generic P6 equation for u(x),

P6 : u′′ = 1

2

[
1

u
+

1

u − 1
+

1

u − x

]
u′2 −

[
1

x
+

1

x − 1
+

1

u − x

]
u′

+
u(u − 1)(u − x)

x2(x − 1)2

[
α + β

x

u2
+ γ

x − 1

(u − 1)2
+ δ

x(x − 1)

(u − x)2

]
,

(2α,−2β, 2γ, 1 − 2δ) = (
θ2
∞, θ2

0 , θ2
1 , θ2

x

)
.

(43)

The formulae in [4] have been further simplified [8, equation (5.19)], and the link between P6
and SD.I.a is


y = x2(x − 1)2

4u(u − 1)(u − x)

{
u′ − u(u − 1)

x(x − 1)

}2

+
�2

∞
8

(1 − 2u) +
θ2

0

8

(
1 − 2

x

u

)

+
θ2

1

8

(
2
x − 1

u − 1
− 1

)
+

θ2
x

8

(
1 − 2

x(u − 1)

u − x

)
,

�∞ = θ∞ + 1,

2A0 = �2
∞ + θ2

0 + θ2
1 + θ2

x ,

4A1 = −(
�2

∞ − θ2
0

)(
θ2

1 − θ2
x

)
,

4A2 = −(
�2

∞ − θ2
x

)(
θ2

0 − θ2
1

)
,

4A3 = (
�2

∞ − θ2
1

)(
θ2

0 − θ2
x

)
,

32A4 = (
�2

∞ + θ2
x

)(
θ2

0 − θ2
1

)2
+
(
�2

∞ − θ2
x

)2(
θ2

0 + θ2
1

)
.

(44)

The elimination of the intermediate constants (A0, A2, A3, A4) provides the link between,
on one hand, the four essential parameters of the reduction (i.e. the two first integrals K1,K2

and the three constant phases βj whose sum is zero) and, on the other hand, the four monodromy
exponents (θ∞, θ0, θ1, θx) of P6,


4K1 = − [
β2

1 + β2
2 + β2

3 + �2
∞ + θ2

0 + θ2
1 + θ2

x

]
,

48K2 = −
(
�2

∞ − θ2
0

)(
θ2

1 − θ2
x

)
β1

−
(
�2

∞ − θ2
x

)(
θ2

0 − θ2
1

)
β2

+

(
�2

∞ − θ2
1

)(
θ2

0 − θ2
x

)
β3

+ (β1 − β2)(β2 − β3)(β3 − β1),

β1β2β3
(
β2

1 + β2
2 + β2

3

)
+ 2β1β2β3

(
�2

∞ + θ2
0 + θ2

1 + θ2
x

)
− 2β1

(
�2

∞θ2
0 + θ2

1 θ2
x

) − 2β2
(
�2

∞θ2
x + θ2

0 θ2
1

) − 2β3
(
�2

∞θ2
1 + θ2

x θ2
0

) = 0,

−(
�2

∞ − θ2
x

)2(
θ2

0 − θ2
1

)2 − 2β2
2

[
4θ4

1

(
�2

∞ + θ2
x

)
+ 4θ4

x

(
θ2

0 + θ2
1

)
+
(
�2

∞ + θ2
x

)(
θ2

0 + θ2
1

)(
�2

∞ + θ2
0 − 3θ2

1 − 3θ2
x

)] − β4
2

[(
�2

∞ + θ2
0 + θ2

1 + θ2
x

)2

− 2
(
�2

∞ − θ2
x

)(
θ2

0 − θ2
1

)]
+ 4β3

2β3
(
�2

∞ − θ2
x

)(
θ2

0 − θ2
1

)
− 2β4

2

(
β2

2 + 2β2β3 + 2β2
3

)(
�2

∞ + θ2
0 + θ2

1 + θ2
x

) − β4
2

(
β2

1 + β2
3

)2 = 0.

(45)

The above first three equations are invariant under both the ternary symmetry on βj and
the quaternary symmetry on (�∞, θ0, θ1, θx).

6. On the single valuedness of the six components

In the previous section, we have only proven that the variables ρ2
j and ϕ′

j are single valued (in
this section, for brevity we use ‘single valued’ instead of ‘with fixed critical singularities’).
However, since the reduction is noncharacteristic, it remains to be proven that all the matrix
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elements in the reduced Lax pair (19) are also single valued, so as to check the conjecture of
Ablowitz, Ramani and Segur [2].

This question is quite similar to a much simpler one, which also seems to have never been
investigated, so let us first solve this question in the simple case of the nonlinear Schrödinger
equation,

iAt + pAxx + q|A|2A = 0, pq �= 0, A ∈ C, (p, q) ∈ R, i2 = −1. (46)

Its travelling wave reduction

A(x, t) =
√

M(ξ) ei(−ωt+ϕ(ξ)), ξ = x − ct, (47)

admits the elliptic general solution


M = −2
p

q
(℘ (ξ) − ℘(a)),

ϕ′ = c

2p
+

j

2

℘ ′(a)

℘ (ξ) − ℘(a)
, j2 = −1,

℘ (a) = (4ωp − c2)/(12p2),

(48)

in which ℘(ξ) is the (even) elliptic function of Weierstrass and the arbitrary constants are
the two elliptic invariants g2, g3 of the function ℘. Since ℘ ′(a) is generically nonzero, the
variable

√
M is multivalued and behaves like (ξ ± a)1/2 near ξ = ±a. However, the variables

e±iargA present the same kind of branching, so a compensation occurs making the two fields A

and Ā single valued. Indeed, the quadrature for ϕ is classical [3, section 18.7.3],

℘ ′(a)

∫
dξ

℘ (ξ) − ℘(a)
= 2ζ(a)ξ + log σ(ξ − a) − log σ(ξ + a), (49)

in which the meromorphic function ζ is the primitive of −℘, the odd entire function σ(z)

behaves like z near z = 0 and the overall expressions of eiωtA and e−iωt Ā in terms of ξ are
indeed globally single valued (but not elliptic)


eiωtA =
√

−2p

q

√
℘(ξ) − ℘(a) eijζ(a)ξ

(
σ(ξ − a)

σ (ξ + a)

)ij/2

eicξ/(2p), j2 = −1,

e−iωt Ā =
√

−2p

q

√
℘(ξ) − ℘(a) e−ijζ(a)ξ

(
σ(ξ − a)

σ (ξ + a)

)−ij/2

e−icξ/(2p).

(50)

Similarly, in the case of the three-wave system, the travelling wave reduction


uj (x, t) = c−1
j ei(βj t+αξ)ψj (ξ),

ūj (x, t) = c−1
j e−i(βj t+αξ)ψ̄j (ξ),

ξ = ax + bt, (a, b) �= (0, 0), β1 + β2 + β3 = 0,

(acj + b)
d

dξ
ψj = iψ̄kψ̄ l − iβjψj ,

(acj + b)
d

dξ
ψ̄j = −iψkψl + iβj ψ̄j

(51)

leads to an identical situation [7]


ψjψ̄j = bj (℘ (ξ) − ℘(aj )),

d

dξ
arg ψj = constant +

j

2

℘ ′(aj )

℘ (ξ) − ℘(aj )
, j2 = −1,

(52)

with an identical conclusion: single valuedness of ψj(ξ) and ψ̄j (ξ).



A reduction of the resonant three-wave interaction to the generic sixth Painlevé equation 12123

To come back to the reduction (9) to P6, establishing the single valuedness of
(cj −ζ )iβj ψj (ζ ) and (cj −ζ )−iβj ψ̄j (ζ ) only requires extra care, the result being an expression
similar to (50), in which the entire functions σ(ξ − a), σ (ξ + a) of Weierstrass are replaced
by the two functions τ1, τ2 introduced by Painlevé

u = ±x(x − 1) e−xθ−1
∞

d

dx
(log τ1 − log τ2), (53)

and u(x) obeys the P6 equation. These two functions τ1, τ2 have no movable singularities, but
they have three fixed critical singularities, located at x = ∞, 0, 1.

7. Dual Lax pairs for the sixth Painlevé equation P6

The third-order monodromy matrixM of the reduced three-wave system, equation (19), admits
in the complex µ plane the same singularities as another third-order matrix introduced [12]
to describe the monodromy of a time-dependent Hamiltonian with three degrees of freedom,
and later considered independently [18] from the point of view of its Laplace transform. The
common singularities of this third-order monodromy matrix are µ = 0 (of the Fuchsian type)
and µ = ∞ (of the non-Fuchsian type).

Moreover, a duality has been established by two different methods (factorization of a
residue [12], Laplace transform in the µ space [18]) between the third-order Lax pair associated
with the monodromy matrix and a second-order matrix Lax pair admitting as only singularities
four Fuchsian points. This latter second-order Lax pair indeed admits the generic P6 equation
as its zero-curvature condition. This should have two consequences. (i) There should exist an
identification between the two systems (reduced three-wave, time-dependent Hamiltonian).
(ii) The third-order matrix Lax pair, equation (19), should have a dual, second-order matrix
Lax pair admitting P6 as its zero-curvature condition.

There exists a strong motivation to have a closer look at the resulting second-order Lax pair
for P6; this is the hope that it might have a holomorphic dependence on the four monodromy
exponents (θ∞, θ0, θ1, θx), while the second-order matrix Lax pair of Jimbo and Miwa [13] has
a meromorphic dependence on θ∞. Indeed, P6 depends holomorphically on these exponents.

Let us first review the derivation of the second-order matrix Lax pair, then consider again
the three-wave system.

7.1. Case of the three-degree-of-freedom Hamiltonian

The time-dependent Hamiltonian with three degrees of freedom [12, equation (3.56)]

H(qj , pj , x) = 1
4 [g31(x)a13a31 + g23(x)a23a32 + g12(x)a12a21] (54)

with the notation
a12 = q1p2 − q2p1 + (µ1/q1)q2 + (µ2/q2)q1,

a21 = q2p1 − q1p2 + (µ2/q2)q1 + (µ1/q1)q2,

a13 = q1p3 + q3p1 − (µ1/q1)q3 + (µ3/q3)q1,

a31 = q3p1 + q1p3 − (µ3/q3)q1 + (µ1/q1)q3,

a23 = q2p3 + q3p2 − (µ2/q2)q3 + (µ3/q3)q2,

a32 = q3p2 + q2p3 − (µ3/q3)q2 + (µ2/q2)q3

(55)

generates a six-dimensional first-order system made of the six Hamilton equations in the
canonical variables (qj , pj ). For the following choice of the time-dependent coefficients:

g23 = [log(g2 − g3)]
′, g31 = [log(g3 − g1)]

′, g12 = 0, (g2 − g1)
′ = 0,

(56)



12124 R Conte et al

this system admits the time-independent first integral

I = a13a31 + a23a32 + a12a21 + 2
(
µ2

1 + µ2
2 + µ2

3

)
(57)

and the Lax pair [12, equations (3.62), (3.65)] (see also [18])

[∂x − L3, ∂λ − M3] = 0,

L3 = −λ


g′

1 0 0
0 g′

2 0
0 0 g′

3


 +

1

2


 0 g12a12 g31a13

g12a21 0 g23a23

g31a31 g23a32 0




+
1

2
diag(g31(µ1(q3/q1)

2 − µ3) + g12(µ1(q2/q1)
2 − µ2),

g23(µ2(q3/q2)
2 − µ3) + g12(µ2(q1/q2)

2 − µ1),

g31(µ3(q1/q3)
2 − µ1) + g23(µ3(q2/q3)

2 − µ2)),

M3 = −

g1 0 0

0 g2 0
0 0 g3


 +

R−1

λ
, R−1 = 1

2


2µ1 a12 a13

a21 2µ2 a23

a31 a32 2µ3


 .

(58)

Let us from now on choose the time-dependent coefficients as

g1 = 0, g2 = 1, g3 = x, g23 = 1

x − 1
, g31 = 1

x
, g12 = 0. (59)

The residue R−1 has rank 2 and factorizes as [12]

R−1 = FG, (60)

F = 1√
2


q1 p1 − µ1/q1

q2 p2 − µ2/q2

q3 −p3 + µ3/q3


 ,

G = 1√
2

(
p1 + µ1/q1 p2 + µ2/q2 p3 + µ3/q3

−q1 −q2 −q3

)
,

(61)

therefore, this third-order matrix Lax pair (L3,M3) admits a dual, second-order matrix Lax
pair (L2,M2) defined as [12, equations (3.55), (3.61)]

[∂x − L2, ∂� − M2] = 0, (62)

L2 = − Rx

� − x
, M2 = R0

�
+

R1

� − 1
+

Rx

� − x
, (63)

R0 = −G diag(1, 0, 0)F, R1 = −G diag(0, 1, 0)F,

Rx = −G diag(0, 0, 1)F, R∞ = −R0 − R1 − Rx = GF,
(64)

with the explicit expressions for the four residues

2R∞ = µ1 + µ2 + µ3

+

(
q1p1 + q2p2 + q3p3 p2

1 + p2
2 − p2

3 − (µ1/q1)
2 − (µ2/q2)

2 + (µ3/q3)
2

−q2
1 − q2

2 + q2
3 −q1p1 − q2p2 − q3p3

)
, (65)

2R0 =
(−q1p1 (µ1/q1)

2 − p2
1

q2
1 q1p1

)
− µ1, (66)



A reduction of the resonant three-wave interaction to the generic sixth Painlevé equation 12125

2R1 =
(−q2p2 (µ2/q2)

2 − p2
2

q2
2 q2p2

)
− µ2, (67)

2Rx =
(−q3p3 −(µ3/q3)

2 + p2
3

−q2
3 q3p3

)
− µ3. (68)

The zero-curvature conditions of (L2,M2) and (L3,M3) are both equivalent to the
Hamilton equations derived from (54). Therefore, since the singularities of the monodromy
matrix M2 in the complex plane of � are four Fuchsian singularities (located at � =
∞, 0, 1, x), the Hamilton equations of (54) can be explicitly integrated in terms of P6 [12, 18].
In particular, the invariants of the four residues are constants of the motion,

tr R∞ = µ1 + µ2 + µ3, tr R0 = −µ1, tr R1 = −µ2, tr Rx = −µ3, (69)

det R∞ = −I

4
+

1

2
(µ1 + µ2 + µ3)

2, det R0 = det R1 = det Rx = 0. (70)

The integration of the Hamilton equations is finally performed by identifying the
coefficients of the matrix Lax pair (63) with the respective coefficients of a matrix Lax
pair for the P6 equation (43). If one chooses for this Lax pair that in [13], the result is [12]


q2
1 + q2

2 − q2
3 = 0,

xq2
1 − {

(1 + x)q2
1 + xq2

2 − q2
3

}
u = 0,

q1p1 + q2p2 + q3p3 − 2a0 = 0,

p2
1 + p2

2 − p2
3 − (µ1/q1)

2 − (µ2/q2)
2 + (µ3/q3)

2 = 0,

q1p1

u
+

q2p2

u − 1
+

q3p3

u − x
+

1

u − x
− x(x − 1)u′ = 0,

x(x − 1)u′

u(u − 1)(u − x)
+ 2v +

µ1

u
+

µ2

u − 1
+

µ3

u − x
= 0,

x(x − 1)v′

u(u − 1)(u − x)
+

{
1

u
+

1

u − 1
+

1

u − x

}
v2

+

{
µ1

u − 1
+

µ1

u − x
+

µ2

u − x
+

µ2

u
+

µ3 + 1

u
+

µ3 + 1

u − 1

}
v

+
µ2

1 + µ2
2 + µ2

3 + 2(µ1 + µ2 + µ3) − 4a2
0 − 4a0

4u(u − 1)(u − x)
= 0,

θ2
∞ = (2a0 + 1)2, θ2

0 = µ2
1, θ2

1 = µ2
2, θ2

x = µ2
3, I = 8a2

0 .

(71)

7.2. Case of the three-wave system

In order to perform the identification of the Hamiltonian system (54) with the three-wave
reduced system (10), several methods are possible.

A first method is to factorize the residue M−1 into a product similar to (61). Since this
residue has rank 3, one first lowers its rank to 2 by applying the transition matrix P = µaI
to the Lax pair, in which I is the identity matrix and a is any of the constant roots of the
characteristic polynomial (21). The factorization of the resulting rank 2 matrix as

R = M−1 − a = FG, trM−1 = 0, (72)

with F a (3, 2) matrix and G a (2, 3) matrix, both of rank 2, is possible [19, section 3.5.4] but
it is not unique. In particular, if the elements of F and G are restricted to rational functions
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of R′
ij s, the resulting elements of F and G depend on four arbitrary functions of R′

ij s, with
no specific direct criterion to choose them; therefore, this is probably not the good method.
However, with definitions (63) and (64), the invariants of the four residues are independent of
the choice of the four gauges,

tr R∞ = 3a, tr R0 = R11, tr R1 = R22, tr Rx = R33, (73)

det R∞ = 3a2 + Q2, det R0 = det R1 = det Rx = 0, (74)

a3 + Q2a + Q3 = 0. (75)

A second method consists of identifying the invariants of the two residues of the third-
order matrix Lax pairs. Since the residue R−1 is not traceless, this identification is

∀z : det(M−1 − z) = det
(
R−1 − µ1 + µ2 + µ3

3
− z

)
, (76)

i.e.


K1 +
β2

1 + β2
2 + β2

3

6
= −I

4
+

(µ1 + µ2 + µ3)
2

6
,

K2 − (β2 − β3)(β3 − β1)(β1 − β2)

54
= −i

(µ1 + µ2 + µ3)I

24
+

5i

108
(µ1 + µ2 + µ3)

3.

(77)

One difference between the two systems is the nature of the involved constants. The
Hamiltonian system has three fixed constants (µ1, µ2, µ3) and one movable constant (the
first integral I), while the reduced three-wave system has two fixed constants (two elements
among the three βj ) and two movable constants (the two first integrals K1,K2).

8. Conclusion

The problem of factorizing the residue R in (72) is still open and currently under investigation.
If it were solved and if the resulting second-order matrix Lax pair for P6 were holomorphic in
the four monodromy exponents, this would be an improvement over the second-order matrix
Lax pair of Jimbo and Miwa [13], which has a meromorphic dependence on �∞. For a
comparative discussion of the Lax pairs of P6, see e.g. [16].

Another direction of research could be to try to match the four-fold symmetry of P6 with
the N-fold symmetry of the reduced N-wave system. In the case N = 3 considered in this
paper, the correspondence between the reduced three-wave and P6 involves

(
�2

∞, θ2
0 , θ2

1 , θ2
x

)
,

see (45), and not
(
θ2
∞, θ2

0 , θ2
1 , θ2

x

)
(as is the case in e.g. the second-order scalar Lax pair of

Fuchs [10]), i.e. it contains the shift �∞ = θ∞ + 1. This discrepancy could disappear with the
four-wave system, N = 4.

Finally, let us mention (and we thank the referee for signalling this reference) a different
approach [14] which also exhibits, in a more general framework, a relationship between the
3WRI and P6 and, thanks to some freedom which allows the creation of suitable zero elements
in the third-order ODE Lax pair, is able to perform a projection on a second-order Lax pair
such as (63).
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